Combining mechanical and optical approaches to dissect cellular mechanobiology.
نویسندگان
چکیده
Mechanical force modulates a wide array of cell physiological processes. Cells sense and respond to mechanical stimuli using a hierarchy of structural complexes spanning multiple length scales, including force-sensitive molecules and cytoskeletal networks. Understanding mechanotransduction, i.e., the process by which cells convert mechanical inputs into biochemical signals, has required the development of novel biophysical tools that allow for probing of cellular and subcellular components at requisite time, length, and force scales and technologies that track the spatio-temporal dynamics of relevant biomolecules. In this review, we begin by discussing the underlying principles and recent applications of atomic force microscopy, magnetic twisting cytometry, and traction force microscopy, three tools that have been widely used for measuring the mechanical properties of cells and for probing the molecular basis of cellular mechanotransduction. We then discuss how such tools can be combined with advanced fluorescence methods for imaging biochemical processes in living cells in the context of three specific problem spaces. We first focus on fluorescence resonance energy transfer, which has enabled imaging of intra- and inter-molecular interactions and enzymatic activity in real time based on conformational changes in sensor molecules. Next, we examine the use of fluorescence methods to probe force-dependent dynamics of focal adhesion proteins. Finally, we discuss the use of calcium ratiometric signaling to track fast mechanotransductive signaling dynamics. Together, these studies demonstrate how single-cell biomechanical tools can be effectively combined with molecular imaging technologies for elucidating mechanotransduction processes and identifying mechanosensitive proteins.
منابع مشابه
Mechanobiology of tendon.
Tendons are able to respond to mechanical forces by altering their structure, composition, and mechanical properties--a process called tissue mechanical adaptation. The fact that mechanical adaptation is effected by cells in tendons is clearly understood; however, how cells sense mechanical forces and convert them into biochemical signals that ultimately lead to tendon adaptive physiological or...
متن کاملMicroengineered platforms for cell mechanobiology.
Mechanical forces play important roles in the regulation of various biological processes at the molecular and cellular level, such as gene expression, adhesion, migration, and cell fate, which are essential to the maintenance of tissue homeostasis. In this review, we discuss emerging bioengineered tools enabled by microscale technologies for studying the roles of mechanical forces in cell biolo...
متن کاملDevelopmental Cell Perspective A Hitchhiker’s Guide to Mechanobiology
More than a century ago, it was proposed that mechanical forces could drive tissue formation. However, only recently with the advent of enabling biophysical and molecular technologies are we beginning to understand how individual cells transduce mechanical force into biochemical signals. In turn, this knowledge of mechanotransduction at the cellular level is beginning to clarify the role ofmech...
متن کاملUniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions.
External mechanical stretch plays an important role in regulating cellular behaviors through intracellular mechanosensitive and mechanotransductive machineries such as the F-actin cytoskeleton (CSK) structures and focal adhesions (FAs) anchoring the F-actin CSK to the extracellular environment. Studying the mechanoresponsive behaviors of the F-actin CSK and FAs in response to cell stretch has g...
متن کاملInfluence of Mechanical Stimuli on Schwann Cell Biology
Schwann cells are the glial cells of the peripheral nervous system (PNS). They insulate axons by forming a specialized extension of plasma membrane called the myelin sheath. The formation of myelin is essential for the rapid saltatory propagation of action potentials and to maintain the integrity of axons. Although both axonal and extracellular matrix (ECM) signals are necessary for myelination...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 43 1 شماره
صفحات -
تاریخ انتشار 2010